

Informing & Developing Systematic Interventions for Diabetes Prevention

Eva Tseng, MD MPH

Assistant Professor

Division of General Internal Medicine

March 17, 2023

Disclosures

I have no relevant financial relationships with commercial interests. I will not be discussing non-FDA approved uses of any drugs.

My work is funded by NIDDK K23DK118205

Outline

- Prediabetes prevalence and treatment guidelines
- Cohort study on prediabetes care management
- Barriers & facilitators to prediabetes care
- Systematic intervention for diabetes prevention

Current State of Prediabetes

Table 3. Estimated number, percentage, and awareness of prediabetes^a among adults aged 18 years or older, United States, 2017–2020 and 2019

Characteristic	Prediabetes,ª 2019 estimates Number in millions (95% CI)	Prediabetes,ª 2017–2020 estimates Percentage (95% CI)	Prediabetes awareness, ^b 2017–2020 estimates Percentage (95% CI)		
Total	96.0 (90.5–102.0)	38.0 (35.7-40.3)	19.0 (15.0–23.7)		
Age group					
18-44	32.2 (27.7–36.8)	27.8 (24.0-32.0)	13.8 (9.8–18.9)		
45-64	37.4 (35.0–39.9)	44.8 (41.7–47.9)	20.6 (14.3–28.9)		
≥65	26.4 (24.1–28.7)	48.8 (44.3-53.2)	23.0 (16.9-30.4)		
Sex					
Men	52.3 (48.0–56.6)	41.9 (38.4–45.6)	17.4 (13.4-22.2)		
Women	43.7 (39.8-47.6)	34.3 (31.2–37.5)	20.9 (15.5–27.5)		
Race-ethnicity					
White, non-Hispanic	62.4 (57.4–67.4)	38.7 (35.5–41.9)	17.3 (11.8-24.7)		
Black, non-Hispanic	12.4 (11.4–13.5)	39.2 (35.8-42.6)	21.9 (18.0-26.5)		
Asian, non-Hispanic	6.0 (5.3–6.8)	37.3 (32.6-42.3)	30.1 (21.0-41.1)		
Hispanic	14.3 (13.0–15.6)	34.5 (31.3–37.7)	20.9 (15.3–27.9)		

Centers for Disease Prevention & Control. National Diabetes Statistics Reports, 2022

Diabetes Prevention Program Works!

LIFESTYLE CHANGE PROGRAM

The lifestyle change program that is part of the CDC-led National Diabetes Prevention Program is proven to help prevent or delay type 2 diabetes. It is based on research that showed:

Weight loss of 5 to 7% of body weight achieved by reducing calories and increasing physical activity to at least 150 minutes per week resulted in a 58% lower incidence of type 2 diabetes

For people 60 and older, the program reduced the incidence of type 2 diabetes by 71%

After 15 years, lifestyle change program participants had a 27% lower incidence of type 2 diabetes

Guidelines on Diabetes Prevention (ADA)

- Referral to intensive lifestyle behavior change program consistent w/ DPP to achieve & maintain 7% body weight loss & 150 min/wk of moderate-intensity physical activity (A)
- Metformin can be considered, especially those with BMI ≥35, age 25-59 yrs, prior GDM, higher fasting plasma glucose (≥110 mg/dL), higher A1c (≥6%) (A)
- At least annual lab monitoring for development of diabetes (E)
- Variety of eating patterns can be considered to prevent diabetes in people with prediabetes (B)
- Screen and treat for modifiable risk factors for cardiovascular disease (B)

Diabetes Prevention & Education at Johns Hopkins

Infrastructure-building for delivery of two (2) programs:

National Diabetes Prevention Program (CDC)

Diabetes Self-Management Training (ADA)

National Diabetes Prevention Program

- CDC-recognized structured lifestyle change program
 - Targets 5-7% weight loss and 150 min/wk of physical activity
- Eligibility: age ≥18 yrs + BMI ≥25kg/m² or ≥23kg/m² if Asian + labs consistent with prediabetes or prior gestational diabetes
- In-person or online
- One year duration (weekly for 6 months then 1-2 times/month for 6 months)
- Insurance coverage: Medicare, Medicaid (in some states), some private insurers

DPPs Nationally & Locally

		A-Z Index
CDC 24/7: Saving Lives, Protecting Per	rol and Prevention ₂ople™ Searc	ch Q
		Advanced Search
ational Diabetes Prevent	tion Program	
ibetes Home		6 🔉 🗇 🥹
National Diabetes Prevention Program	Find a Program	
About the National DPP +	Find a program near you by entering your zip code, this will show you a list of available Please contact the organization for the most up-to-date class locations and information	programs offered in your area. I.
People at Risk for Type 2 Diabetes +	In-Person Online Distance Learning Combination	
Health Care Professionals +	Zip Code Within Language Options Payment O	otions
How Pharmacists Can Participate	21205 25 Miles V Please Select V Please Select	ect •
Testimonials	Medicare Diabetes	
Lifestyle Change Program + Providers	Prevention Program MDPP Supplier Reset Search	
Employers and Insurers +	The Brancati Center	WARREN
Tools and Resources +	2024 East Monument St. Baltimore, MD 21205	The lakes
What's New?	(410) 614-2701 C: Visit Website	Mays Chappe
		Timonium
🔀 Get Email Updates	View Details	Lutherville
To receive email updates about the National Diabetes	STEVENSON	Riderwood Retervay Towson
Prevention Program (National DPP) enter your email address:	University of Maryland Center for Diabetes & Endocrinology	EKLAND Ruxton

https://www.cdc.gov/diabetes/prevention/find-a-program.html

Informing Systematic Interventions for Diabetes Prevention

Diabetes Prevention in Primary Care: PCP Surveys Table 2 Reported Knowledge, Practices, and Perceptions of Barriers/Interventions for Prediabetes

N (%)

	Knowledge of recommendations for management of predial	betes
	Refer to diabetes prevention lifestyle change program	88 (29 7)
Р	Counseling on diet changes and physical activity	209
C	concounty on one charges and physical activity	(70.1)
	Refer to nutritionist	50 (16.8)
	Discuss starting metformin	53 (17.8)
	Refer to bariatric surgery	9 (3.0)
	150 min/week of physical activity	120
	7% body weight loss	(41.0) 22 (7.6)
	Practice behaviors	22 (1.0)
	Initial management approach*	
	Refer to diabetes prevention lifestyle	107
	change program	(35.9)
	Counseling on diet changes and physical activity	276
_	Defende vertritienist	(92.6)
,	Refer to nutritionist	(41.3)
	Discuss starting metformin	128
	Discus surving incustinin	(43.0)
	Refer to bariatric surgery	30 (10.1)

 Regional and national survey of primary care providers (PCPs) demonstrated gaps in knowledge about diabetes prevention and underutilization of Diabetes Prevention Programs

Tseng E et al. Survey of primary care providers' knowledge of screening, diagnosing and managing prediabetes. J Gen Intern Med. 2017. Tseng E et al. National survey of primary care physicians' knowledge, practices and perceptions of prediabetes. J Gen Intern Med. 2019.

Diabetes Prevention Practices in Primary Care: NHANES Data Table 3-Percentage of individuals with prediabetes reporting metformin use by criteria for metformin use Bisk factors for prediabetes n* Nt % (SE) on metformint

 Metformin use <1% among adults with prediabetes using NHANES data from 2005-2012

criteria for metformin use				
Risk factors for prediabetes	n*	N†	% (SE) on metformin‡	
Prediabetes by IFG, IGT, HbA _{1c} , or self-report	91	7,652	0.8 (0.008)	
Prediabetes based on IGT alone	1	285	0.8 (0.008)	
Prediabetes based on IFG alone	0	1,577	0	
Prediabetes based on HbA _{1c} 5.7–6.4% alone	18	3,065	0.6 (0.002)	
Prediabetes based on HbA _{1c} 6.0–6.4% alone	13	1,411	0.9 (0.003)	
Self-reported prediabetes alone	0	0	0	
BMI ≥35 kg/m ²	33	1,316	1.9 (0.005)	
IFG and IGT + risk factor§	0	0	0	
IGT + risk factor	1	190	1.1 (0.1)	
IFG + risk factor	0	1,178	0	
HbA _{1c} 5.7–6.4% + risk factor	13	2,101	0.7 (0.002)	
Self-reported prediabetes + risk factor	0	0	0	
VFG and IGT + risk factor∥ + HbA _{1c} 6.0–6.4%	0	179	0	

IFG, impaired fasting glucose; IGT, impaired glucose tolerance. *Represents unweighted *n* for those treated with metformin. †Represents unweighted *n* for those treated or not treated with metformin. ‡Represents weighted percentage. §2007 guidelines risk factors: age <60 years, BMI \geq 35 kg/m², family history of diabetes, elevated triglycerides, low HDL cholesterol, hypertension, or HbA_{1c} \geq 6%. We defined elevated triglycerides as \geq 150 mg/dL and low HDL cholesterol as <40 mg/dL based on Adult Treatment Panel III guidelines (30). ||2017 guidelines risk factors: age <60 years, BMI \geq 35 kg/m², or history of gestational diabetes mellitus (not available in this data set) and rising HbA_{1c} despite lifestyle intervention (not available in this data set).

Clinical Care Among Individuals with Prediabetes: Retrospective Cohort Study

Tseng E, et al. Clinical care among individuals with prediabetes in primary care: a retrospective cohort study. J Gen Intern Med. 2022 Dec;37(16):4112-4119

Objectives

- Describe the care management activities of patients with prediabetes
- Determine what patient factors are associated with these prediabetes care management activities
- Describe the incidence of diabetes after diagnosis of prediabetes and whether PCP treatment practices and patient factors are associated with progression to diabetes

Methods

- Data: linked claims and EHR dataset for patients participating under 3 Hopkins Health Care insurance plans from 2/2016-2/2021
- Cohort: age 18+ with at least 2 outpatient primary care encounters
- Inclusion: lab diagnosed prediabetes (HbA1c 5.7-6.4% or fasting glucose 100-125mg/dL), one claim in 12m prior to and 12m after cohort entry date
- Exclusion: prior diagnosis of diabetes (SUPREME-DM definition), history of pregnancy in prior 6m, or recent steroid use in prior 30 days
- Cohort entry date (CED) = date of first lab consistent with prediabetes

Outcomes

- Primary Outcome: prediabetes care management activities
 - Using EHR data: PCP visits, PCP visits coded w/ ICD-10 code for prediabetes, glycemic test orders and results, nutrition referrals and visits
 - Using claims data: nutrition visits, metformin fills
- Secondary Outcome: development of diabetes
 - Using EHR and claims data
 - SUPREME-DM definition: ≥1 inpatient ICD code for diabetes or ≥2 of the following (outpatient ICD code for diabetes, labs in diabetes range, or diabetes medication fill)

Raebel MA, et al. Validating Type 1 and Type 2 Diabetes Mellitus in the Mini-Sentinel Distributed Database Using the Surveillance, Prevention, and Management of Diabetes Mellitus (SUPREMEDM) Datalink. MINI-SENTINEL METHODS. 2016 April.

Statistical Analysis

- Primary/Secondary Objectives: prediabetes care management activities and associated factors
 - Tabulated occurrence of each activity within 3, 6, and 12m after CED (dichotomized as any or none)
 - Tested strength of association between baseline characteristics and activities using bivariate logistic regression and multiple logistic regression with clinic as fixed effect

Statistical Analysis

- Tertiary Objective: development of diabetes
 - Described patients who developed diabetes within 3, 6, and 12m after CED
 - Tested strength of association between baseline characteristics and development of diabetes using bivariate logistic regression
 - Evaluated independent predictors of diabetes using multiple logistic regression with clinic as fixed effect

(n=3888) Mean (SD) orm(%)

	Mean (SD) orn(%)
Age (years)	62.7 (14.6)
18–26 years	57 (1.5)
27–44 years	465 (12.0)
45-64 years	1253 (32.2)
65–74 years	1349 (34.7)
75+ years	764 (19.7)
Female sex	2544 (65.4)
Race	
White	2140 (55.0)
Black	1341 (34.5)
Asian	156 (4.0)
Other/multiracial	218 (5.6)
Unknown	33 (0.9)
Hispanic ethnicity	117 (3.0)
Insurance plan	
Commercial	901 (23.2)
Medicare	1950 (50.2)
Medicaid	491 (12.6)
Other*	546 (14.0)
BMI $(kg/m_{2}^{2})^{\dagger}$	30.0 (7.6)
BMI (kg/m^2)	
< 25	778 (25.9)
25–29	959 (31.9)
30–34	629 (21.0)
35–39	324 (10.8)
≥ 40	313 (10.4)
Fasting plasma glucose (mg/dL)	98.4 (11.3)
Fasting plasma glucose 100–109 mg/dL	850 (84.8)
Fasting plasma glucose 110-125 mg/dL	153 (15.3)
HbA1c, %	6.0 (0.2)
HbA1c 5.7–5.9%	1860 (53.2)
HbA1c 6–6.4%	1639 (46.8)

Results: Prediabetes Care Management

Activities

Outcome	Within 3 months,n (%)	Within 6 months,n (%)	Within 12 months,n (%)
PCP practices ≥ 1 PCP visit coded with ICD diagnosis of pradicheter	147 (3.8)	262 (6.7)	405 (10.4)
\geq 1 visit coded with ICD diagnosis of prediabetes among those with \geq 1 PCP visit	147 (8.5)	262 (10.5)	405 (13.0)
≥ 1 glycemic test	797 (20.5)	1578 (40.6)	2463 (63.4)
≥ 1 referral to nutrition [†] ≥ 1 metformin prescription ^{†‡}	8 (0.2) 77 (2.0)	19 (0.5) 126 (3.2)	37 (1.0) 211 (5.4)
Patient behaviors			
\geq 1 PCP visit \geq 1 glycemic test	1739 (44.7) 447 (11.5)	2493 (64.1) 1091 (28.1)	3105 (79.9) 1957 (50.3)
\geq 1 glycemic test completed among those with test ordered	438 (55.0)	1080 (68.4)	1950 (79.2)
≥ 1 nutrition visit	15 (0.4)	25 (0.6)	39 (1.0)
≥ 1 nutrition visit	16 (0.4)	27 (0.7)	41 (1.1)
\geq 1 nutrition visit completed among those with referral placed	4 (50.0)	13 (68.4)	28 (75.7)
≥ 1 metformin fill	121 (3.1)	148 (3.8)	189 (4.9)
\geq 1 metformin fill (claims)* among those with prescription	55 (71.4)	89 (70.6)	161 (76.3)

*EHR data used unless otherwise noted. n refers to the number of unique individuals who had at least one occurrence of each activity †American Medical Association proposed quality measures for prediabetes (2019)

‡Some portion of these patients may have been started on metformin for diabetes prevention or once they developed diabetes

[§]More patients had a nutrition visit than had a referral since a referral is not required by all insurances

Results: Factors Associated with Prediabetes Care

JOHNS HOPKINS SCHOOL of MEDICINE

BMI body mass index, FPG fasting plasma glucose, HbA1c hemoglobin A1c

*p < 0.05 generated from logistic regression analysis comparing to reference group

Results: Factors Associated with Incident Diabetes (n=249)

Table 5 Predictors of Development of Diabetes Within 12 Months in a Multiple Logistic Regression Model Stratified by Baseline Glycemic Level

Variable	Baseline HbA1c 6.0–6.4% or FPG 110–125 mg/dL	Baseline HbA1c 5.7–5.9% or FPG 100–109 mg/dL	All baseline HbA1c and glucose levels		
	Odds ratio (95% CI)				
Age	1.00 (0.98-1.02)	0.98 (0.96-0.99) p=0.03	0.99 (0.98-1.01)		
Female vs. male	0.74 (0.49–1.13)	0.86 (0.51-1.45)	0.79 (0.57-1.09)		
Asian vs. White	1.27 (0.43-3.78)	2.34 (0.77-7.09)	1.73 (0.80-3.76)		
Black vs. White	1.55 (0.99-2.43)	1.26 (0.75-2.15)	1.44 (1.02–2.04) p=0.04		
Other vs. White	0.60(0.18-2.01)	1.20 (0.41-3.50)	0.83 (0.38-1.85)		
BMI (per 1 kg/m^2)	1.04 (1.02–1.07) p<0.001	1.05 (1.02–1.08) p<0.001	1.05 (1.03–1.06) p<0.001		
Care utilization prior to CED [†]					
Ouartile 2 vs. 1	0.55 (0.32-0.97) p=0.04	0.67 (0.34-1.32)	0.57 (0.37–0.88) p=0.01		
Ouartile 3 vs. 1	0.70 (0.41–1.20)	1.10 (0.59-2.06)	0.82 (0.55-1.23)		
Ouartile 4 vs. 1	0.65 (0.38-1.13)	0.51 (0.25-1.04)	0.55 (0.36-0.85) p=0.006		
Medicare vs. commercial	0.91 (0.50-1.67)	2.02 (0.97-4.19)	1.33 (0.83-2.11)		
Medicaid vs. commercial	0.90(0.41 - 1.95)	0.78(0.31 - 1.97)	0.86(0.48 - 1.54)		
Other vs. commercial	0.62 (0.28-1.37)	1.49 (0.62-3.57)	0.91 (0.51-1.63)		

BMI body mass index, CED cohort entry date, FPG fasting plasma glucose, HbA1c hemoglobin A1c *Fixed-effects model with clinic as a fixed effect. Displayed variables were included in the model together †Care utilization defined as sum of hospitalizations and outpatient visits in 12 months prior to CED

Conclusions

- Few patients received a coded diagnosis of prediabetes, were referred to a nutritionist, or prescribed metformin in 12m after meeting cohort criteria, similar to prior studies although our rates of nutrition referral were lower
- Consistent with prior research, patients with higher baseline glycemic levels or higher BMI were more likely to receive prediabetes care. They were also more likely to develop diabetes within 12 months.
- Black patients were 1.4 times more likely to develop diabetes compared to White patients

Strengths

- Diverse population
- Newer data (2016-2021) and use of both EHR and claims data
- Examined type of insurance to see if prediabetes care differed by insurance
- Examined development of diabetes which adds to limited data on risk of progression to diabetes among different racial/ethnic groups in the U.S.

Limitations

- Single health system
- 5-year study period overlapped with COVID-19 pandemic so outcome rates may be lower than usual
- Lack of data on insurance enrollment dates
- Included both prevalent and incident prediabetes but baseline characteristics were similar in both groups
- Model included clinic as a fixed effect but did not examine other cliniclevel predictors
- DPPs exist at our institution but referral order was not implemented till 2020 and program had limited capacity during study period

Implications/Future Directions

- Since the underdiagnosis and undertreatment of prediabetes is evident, future research is needed to understand whether clinical decision support tools in the EHR can help improve prediabetes care in primary care settings and reduce diabetes incidence
- Continuing education on diabetes prevention guidelines is needed
- Expanding our analysis to other health systems and patients from underserved populations

Engaging Payors & PCPs in Improving Diabetes Prevention

Tseng E, et al. Engaging payors and primary care physicians together in improving diabetes prevention. J Gen Intern Med. 2022 Sept 20. DOI: 10.1007/s11606-022-07788-8

Objective

 Through interviews of PCPs and payors, understand barriers to DPP uptake that exist and intersect at different levels (patients, PCPs and payors) to inform strategies to improve diabetes prevention in primary care settings

Methods

- Design: During May 2020-October 2021, we conducted remote, semistructured interviews (30-60 min) with PCPs and payors
- Participants: PCPs from primary care practices affiliated with Johns Hopkins Health System. Payors from regional commercial, Medicare and Medicaid plans
- Approach:
 - Standardized interview guide focused on barriers, facilitators and potential intervention components
 - Interviews recorded using Zoom and professionally transcribed
- Analysis: Two reviewers double-coded transcripts using framework analytic approach

N=16 PCPs from 13 primary care clinics & n=7 payor leaders representing 6 insurance plans

PCP reported patientlevel barriers

- Lack of programs and insurance coverage of resources to address nutrition and exercise
- Inadequate resources to address social determinants of health that impact diabetes prevention

PCP barriers

- Low PCP knowledge about DPPs and misperceptions of insurance coverage of DPPs
- Inadequate clinical staff to address diabetes prevention

PCP & payor barriers

- Absence of prediabetes quality measures
- Inadequate engagement of PCPs and patients by payors

PCP reported patient-level barriers

 Lack of programs and insurance coverage of resources to address nutrition and exercise PCP: Standard primary care has found significant challenges with getting patients into lifestyle modification programs [...] I think that created a learned helplessness [...] So I think rarely do providers think about DPPs or even nutrition referrals unless patients specifically asked, simply because typically it's been challenging to get the access to those

Payor: We connect members with dietitians and diabetic educators. We also have – within our own care management strategies [..] toolkits and clinical pathways that we use to meet members where they are. So, they are evidence-based strategies and/or questions or areas of opportunities that we've customized.

PCP barriers

 Low PCP knowledge about DPPs and misperceptions of insurance coverage of DPPs Payor: There's no good way to get the physician to say, this is what's available to this member under this account under the [Commercial] plan and you can refer them to this virtual diabetes clinic. That would be the ideal pathway if the person had a physician to go through the physician, but from a data perspective, it's really challenging to get that level of granularity about coverage, benefits and programs

PCP: Nowadays is not just Medicare. It's Medicare, Medicare Maryland Primary Care Program, [and] Medicare Advantage plan [...] What happens is you refer somebody to the program (DPP), you get 10 messages trying to clarify if they can go

PCP & payor barriers

 Absence of prediabetes quality measures **PCP:** There are real dollars being attached to getting certain reports and hitting certain targets, and not only does it matter for our patients and their well-being, but it **matters for our financial health and the resources we can bring in**

Payor: If there is some kind of requirement by the state to report on our prediabetic members, let's say –[...] some kind of HEDIS measures or reportable thing, because once we start reporting on it – we pay attention to it. We start measuring it, and that's how we get more serious about how we address it and how we prevent it

Conclusions/Implications

- Identified important perceived patient-, PCP-, and payor-level barriers to engaging in diabetes prevention
- Strategic priorities proposed based on findings:
 - Improve transparency of coverage benefits and changes
 - Increase coverage of lifestyle change resources for people unable to participate in DPPs
 - Data reporting and outreach by payors to PCPs
 - Continuing education efforts for clinicians from a systems-level
 - Review and endorsement of prediabetes quality measures

Implementation & Evaluation of A Systematic Intervention for Diabetes Prevention

Study ongoing

Objectives

Design, implement and evaluate a systematic intervention for diabetes prevention, comparing intervention and control clinics

- To understand if PCP practices in managing patients with prediabetes differ between baseline and implementation periods, comparing intervention and control clinics
 - Hypothesis: Patients in intervention clinic will have higher rates of prediabetes care (primary outcome) than patients in control clinic, comparing baseline and implementation periods
- To understand if there are factors associated with patients receiving higher rates of prediabetes care
 - Hypothesis: Patients with higher BMI and baseline glycemic level will be more likely to receive prediabetes care regardless of intervention assignment but rates will be higher in the intervention clinic

Prioritizing diabetes prevention across the health system

PATIENTS

Engaging patients through education and shared decisionmaking

Engaging clinicians through education, creating a standardized treatment algorithm and building clinical decision support tools

CLINICAL DECISION SUPPORT Building tools for patients and clinicians to enhance education and promote evidence-based treatment

Intervention & Participants

- Intervention: START Diabetes Prevention Clinical Pathway (next slide)
- Intervention period: 12 months (May 2022- May 2023)
- Sites: academically affiliated clinics located outside of Baltimore; intervention and control clinics with similar patient demographics (~1200 patients with prediabetes seen yearly in each clinic)
- Participants:
 - Adult patients presenting for routine PCP visit
 - Have prediabetes or h/o prediabetes

START Diabetes Prevention Clinical Pathway

Control clinic does not have intervention components highlighted in red

START Diabetes Prevention Strategy

Treatment algorithm based on evidencebased guidelines

Prediabetes orders smartset contains all these orders

- * Strongest evidence for diabetes prevention are Diabetes Prevention Program and Metformin. Both Johns Hopkins DPP and MNT visits are available in-person or virtually.
- ** After patient schedules, Johns Hopkins Nutrition Dept. conducts financial clearance to confirm insurance coverage.

Be specific with ICD diagnosis codes for MNT referral; add relevant diagnoses as some may be covered over others.

Decision

Aid

Use a prediabetes

decision aid to discuss treatment options with

patients

Guide to Discussing DPP vs. Metformin

Know your risk of developing diabetes

OUT OF 100 PEOPLE LIKE YOU WHO JOIN A **<u>DIABETES</u> <u>PREVENTION PROGRAM</u>...**

14 of the 100 people with prediabetes <u>WILL</u> develop diabetes in 3 years

86 of the 100 people with prediabetes will **NOT** develop diabetes in 3 years

Joining a diabetes prevention program means:

- · attending 1-hr group classes for a year
- losing 10 to 15 pounds (Johns Hopkins DPP participants lose over 5% body weight on average)
- eating healthy, being regularly active
- joining a program proven to work

OUT OF 100 PEOPLE LIKE YOU WHO TAKE <u>METFORMIN</u> TO PREVENT DIABETES...

78 of the 100 people with prediabetes will **NOT** develop diabetes in 3 years

Taking Metformin to prevent diabetes means:

- taking a new medication once or twice a day until your doctor tells you to stop
- possibly losing 5 pounds
- possibly experiencing some side effects

OUT OF 100 PEOPLE LIKE YOU WHO MAKE <u>NO CHANGES</u>...

30 of the 100 people with prediabetes <u>WILL</u> develop diabetes in 3 years

70 of the 100 people with prediabetes will **NOT** develop diabetes in 3 years

*******	ŤŤ
*******	† †
*******	ŤŤ
	11
	H
	ш
	11
	11

Developing diabetes means:

- pricking your finger regularly
- taking more than one medicine every day
- increasing your risk of blindness, dialysis, heart disease, stroke

Adapted from Dr. Matthew O'Brien

Data Collection

- Patient REDCap surveys sent via email after each PCP visit
- Patient Epic data from primary care clinical database
- PCP REDCap surveys sent via email at baseline, 6 months, and 12 months

Outcomes

Primary

- Referred to DPP within 30 days of visit
- Referred to MNT within 30 days of visit
- Prescribed metformin within 30 days of visit
- Prediabetes diagnosis code at PCP visit

Secondary

- DPP enrollment within 120 days
- Attended MNT visit within 30 days of visit
- PCP visit within 6 months from initial visit
- Repeat A1c testing within 12 months
- Weight loss ≥5%

Outcomes

Adoption

- PCP completion of CME module on diabetes prevention
- MyChart messages read by patients

PCP Outcomes

- Acceptability
- Actionability
- Adoption of intervention components

Patient Outcomes

- Satisfaction with PCP discussion about prediabetes
- Confidence & motivation to manage prediabetes
- Engagement in lifestyle changes to address prediabetes

Analysis Plan

- Study Population Inclusion/Exclusion:
 - Adults age 18 and older, on prediabetes registry, last A1c <6.5% at time of initial PCP visit
 - Completed ≥1 PCP visit during 12-month intervention period and ≥1 PCP visit in 12-month baseline period.
- Descriptive analysis: baseline characteristics of patients, comparing intervention and control clinics
- Interrupted time series analysis: evaluate differences in trend of primary outcomes in baseline and implementation periods, comparing intervention and control clinics
- Multiple logistic regression analysis: determine the importance of hypothesized predictors of these primary outcomes adjusting for age, race, and baseline A1c

Preliminary Results: Referrals

DPP and MNT referrals per 50 eligible PCP visits

Intervention clinic

Control clinic

Preliminary Results: PCP Survey in Intervention Clinic

Response rate at baseline 9/16 (56%)

Response rate at 6 months 13/18 (72%). N=2 PCPs joined clinic.

P-value is for McNemar test for paired data between baseline and 6 months (n=7). Unpaired data not included

Preliminary Results: PCP Survey in Intervention Clinic

Response rate at baseline 9/16 (56%) Response rate at 6 months 13/18 (72%). N=2 PCPs joined clinic.

P-value is for McNemar test for paired data between baseline and 6 months (n=7). Unpaired data not included.

Preliminary Results: Patient Survey

		Intervent (n=1	ion clinic .92)	Control clinic (n= 154)		
		Yes	No	Yes	No	
Mean weekly response rate: 5-31% (mean=13%)	Have prediabetes?	128 (67)	64 (33)	98 (64)	56 (36)	
	Receive prediabetes handout prior to visit?	75 (39)	115 (61)	NA	NA	
	If yes, was it helpful?	63 (88)	9 (12)	NA	NA	
	Discuss prediabetes with PCP at recent visit?	122 (64)	69 (36)	71 (46)	82 (54)	

Patients surveyed after each routine PCP visit. If ≥ 1 survey completed, only initial survey result included here. This was collected from 5/30/22-3/1/23

Preliminary Results: Patient Survey

	Intervention clinic (n=120)					Control clinic (n=70)				
	Strongly Agree	Agree	Neither agree or disagree	Disagree	Strongly disagree	Strongly Agree	Agree	Neither agree or disagree	Disagree	Strongly Disagree
Understood what doctor was telling me about prediabetes	92 (76)	25 (21)	3 (2)	0	1 (1)	44 (63)	21 (30)	4 (6)	0	1 (1)
Felt my opinion was valued when talking about prediabetes	95 (79)	16 (13)	9 (7)	0	1 (1)	47 (68)	16 (23)	4 (6)	1 (1)	1 (1)
Discussed options and ways to address prediabetes	78 (64)	28 (23)	13 (11)	1 (1)	1 (1)	40 (57)	19 (27)	9 (13)	1 (1)	1 (1)
Felt my doctor's concern about prediabetes	88 (73)	21 (18)	10 (8)	0	1(0)	43 (61)	21 (30)	5 (7)	0	1 (1)

Patients surveyed after each routine PCP visit. If ≥1 survey completed, only initial survey result included here

Challenges

- IRB approval
- Epic access and challenges with sending patient materials via MyChart
- Setting up longitudinal data collection in REDCap
- PCP engagement & feedback
- Unable to utilize other clinical staff in intervention
- Patient survey response rate has been low despite calls and reminders

Future Directions

- Expand systematic intervention across health system and to other populations including underserved patients
- RO3 grant (pending funding) to develop prediabetes digital patient activation tool
- Evaluate effectiveness of clinical decision support tools for diabetes prevention
- Understand if lower intensity interventions for prediabetes are effective

Acknowledgments

Thank you to my K23 mentoring and research team

Mentors

- Jeanne Clark, MD MPH
- Jill Marsteller, PhD
- Nisa Maruthur, MD MHS
- Jodi Segal, MD MPH
- Katherine Smith, PhD

Research

- Nola Durkin, BS
- Kayla Meza, MPH
- Mari Bugayong, MSPH
- BEAD/PC-COE

Clinical

- GSS SOM General Internal Medicine
 Clinic
- GSS JHCP Internal Medicine

Thank You!

Questions? Please email me at etseng3@jhmi.edu!

Twitter @evtseng